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Abstract

We use the Gamma process to construct a nonparametric prior over
reversible Markov chains. We use the resulting reversible Markov chain as
the hidden sequence in a Hidden Markov model and present experimental
results on two real datasets: epigenomics and ion channel recording.

Motivation

Reversible Markov chain:
P(X1, . . . , Xt, . . . XT ) = P(XT , . . . , Xt, . . . X1)

Applications
•Modelling physical systems e.g. transitions of a macromolecule
conformation at fixed temperature.

•Chemical dynamics of protein folding.
Tasks
•Find the transition matrix of the reversible Markov chain.
•Put a prior on the transition matrix.

Background

Gamma process ΓP(α0H) : Completely random measure on X with
Lévy measure

ν(dw, dx) = ρ(dw)H(dx) = α0w
−1e−α0wdw H(dx).

on the space X × [0,∞). H ; base measure, α0: concentration parameter.

G0 :=
∞∑
i=1
wiδXi

∼ ΓP(α0H)

Countably infinite collection of pairs {Xi, wi}∞i=1.
Random walk on a graph G: Discrete-time random walk on G →
Markov chain with Xt = k, k ∈ {i, r, . . . }

& transition matrix
P (i, r) := Jir∑

k Jik

i

r q

Jir

Jrq

Jiq

Put prior on the transition matrix P (or on weights Js).

Related work

•Edge Reinforced Random Walk (ERRW) [Diaconis and Freedman,
1980], [Diaconis and Rolles, 2006]: conjugate prior for the transition
matrix for reversible MCs.

•Edge reinforced schema by Bacallado et al. [2013] extends ERRW to
countably infinite space, reversible process, no closed form for the
prior.

Symmetric Hierarchical Gamma Process
(SHGP)

Define a prior over the weights Js using the ΓP hierarchically.
1 ΓP over X :

G0 =
∞∑
i=1
wiδxi ∼ ΓP(α0, µ0)

States S := {xi;xi ∈ X , i ∈ N},
countably infinite.

2 ΓP over S × S :
G =

∞∑
i=1

∞∑
j=1

JijδXiXj
∼ ΓP(α, µ),

Jij|α,wi, wj ∼ Gamma(αwiwj, α)
Base measure atomic on S × S :
µ(xi, xj) = G0(xi)G0(xj)
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Reversibility
Impose Jij = Jji ∼ Gamma(αwiwj, α)

Result: detailed balance holds → Reversible markov chain
πiP (i, j) = πjP (j, i)

where πi =
∑

k Jik∑
j

∑
k Jik
, 0 < ∑

k Jik <∞
Corollary: π is the invariant measure of the chain.

De Finetti Representation

[Representation Theorem, Diaconis & Freedman, 1980]: A process is
Markov exchangeable and returns to every state visited infinitely of-
ten (recurrent), if and only if it is a mixture of recurrent Markov
chains

P(X2, . . . , Xt, . . . , XT |X1) =
∫
P

T−1∏
t=1

P (Xt, Xt+1)µ(dP |X1)

where P is the set of stochastic matrices on S × S and µ(·|X1) on P is
the mixing measure.
•Explicitly defined prior µ (SHGP): hierarchical construction of J ’s.
•SHGP is a mixture of recurrent, reversible Markov chains.
•SHGP is recurrent, Markov exchangeable and reversible.

SHGP as part of a Hidden Markov Model

Finite number of states K. Countably infinite model as K →∞.

G0 =
K∑
i=1
wiδxi

wi ∼ Gamma(α0µ0(xi), α0)

G =
K∑
i=1

K∑
j=1

Jijδxi,xj

Jij = Jji ∼ Gamma(αwiwj, α)
Yt|Xt, E ∼iid F (·|EXt

)
{Ek, k = 1, · · · , K} state emission parameters. F : multinomial, Poisson
and Gaussian.

Experiments

ChIP-seq: measures what proteins are bound to DNA along the
genome
•Y matrix T × L, T = 204 and L = 6: counts, how many reads for the
protein of interest l map to bin t

•Poisson (multivariate) likelihood model F
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ChipSeq data for L = 6 proteins Learnt emission matrix

Patch clamp recordings: recordings of changes in electrical potential
caused by conformational changes in ion channels.
•Y matrix 1× T , T = 104: 10KHz recording of electrical potential
measurements of a single alamethicin channel.

•Gaussian likelihood: Yt|Xt, E ∼ N(Yt;µ, σ), µ = E(Xt, 1),
σ = E(Xt, 2) with K × 2 emission matrix E.
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Clusters found by SHGP shown relative to a histogram of levels across the recording

ChIP-seq Ion channel recording
Train log likelihood Test log likelihood Train log likelihood Test log likelihood

Reversible −1.0488± 0.0009 −3.2422± 0.0023 2.204± 0.055 2.034± 0.058
Non-rev −1.0494± 0.0009 −3.2478± 0.0022 2.108± 0.084 1.970± 0.078
iHMM −1.0727± 0.0041 −3.3047± 0.0027 2.134± 0.070 2.008± 0.058
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