UNIVERSITYOF CAMBRIDGE

Abstract

We use the Gamma process to construct a nonparametric prior over reversible Markov chains. We use the resulting reversible Markov chain as the hidden sequence in a Hidden Markov model and present experimental results on two real datasets: epigenomics and ion channel recording.

Motivation

Reversible Markov chain:

$$P(X_1,\ldots,X_t,\ldots,X_T) = P(X_T,\ldots,X_t,\ldots,X_1)$$

Applications

- Modelling physical systems e.g. transitions of a macromolecule conformation at fixed temperature.
- Chemical dynamics of protein folding.

Tasks

- Find the transition matrix of the reversible Markov chain.
- Put a prior on the transition matrix.

Background

Gamma process $\Gamma P(\alpha_0 H)$: Completely random measure on \mathcal{X} with Lévy measure

 $\nu(dw, dx) = \rho(dw)H(dx) = \alpha_0 w^{-1} e^{-\alpha_0 w} dw \ H(dx).$

on the space $\mathcal{X} \times [0, \infty)$. H; base measure, α_0 : concentration parameter.

$$G_0 := \sum_{i=1}^{\infty} w_i \delta_{X_i} \sim \Gamma P(\alpha_0 H)$$

Countably infinite collection of pairs $\{X_i, w_i\}_{i=1}^{\infty}$.

Random walk on a graph \mathcal{G} : Discrete-time *random walk* on $\mathcal{G} \rightarrow$ Markov chain with $X_t = k, k \in \{i, r, ...\}$

& transition matrix

$$P(i,r) := \frac{J_{ir}}{\sum_k J_{ik}}$$

Put prior on the transition matrix P (or on weights Js). Related work

- Edge Reinforced Random Walk (ERRW) [Diaconis and Freedman, 1980], [Diaconis and Rolles, 2006]: conjugate prior for the transition matrix for reversible MCs.
- Edge reinforced schema by Bacallado et al. [2013] extends ERRW to countably infinite space, reversible process, no closed form for the prior.

A reversible infinite HMM using normalised random measures

Konstantina Palla¹ David A. Knowles² Zoubin Ghahramani¹ ¹University of Cambridge kp376@cam.ac.uk ²Standford University

Jiq

 J_{rq}

Symmetric Hierarchical Gamma Process (SHGP)

Define a prior over the weights Js using the ΓP hierarchically. **1** ΓP over \mathcal{X} :

 $G_0 = \sum_{i=1}^{\infty} w_i \delta_{x_i} \sim \Gamma P(\alpha_0, \mu_0)$ States $\mathcal{S} := \{x_i; x_i \in \mathcal{X}, i \in \mathbb{N}\},\$ countably infinite.

2 ΓP over $\mathcal{S} \times \mathcal{S}$: $G = \sum_{i=1}^{N} \sum_{j=1}^{N} J_{ij} \delta_{X_i X_j} \sim \Gamma P(\alpha, \mu),$ $J_{ij}|\alpha, w_i, w_j \sim \text{Gamma}(\alpha w_i w_j, \alpha)$

Base measure atomic on $\mathcal{S} \times \mathcal{S}$: $\mu(x_i, x_j) = G_0(x_i)G_0(x_j)$

Reversibility

Impose $J_{ij} = J_{ji} \sim \text{Gamma}(\alpha w_i w_j, \alpha)$ Result: detailed balance holds \rightarrow Reversible markov chain $\pi_i P(i,j) = \pi_j P(j,i)$ where $\pi_i = \frac{\sum_k J_{ik}}{\sum_i \sum_k J_{ik}}, \ 0 < \sum_k J_{ik} < \infty$ Corollary: π is the invariant measure of the chain.

De Finetti Representation

[Representation Theorem, Diaconis & Freedman, 1980]: A process is Markov exchangeable and returns to every state visited infinitely often (recurrent), if and only if it is a mixture of recurrent Markov chains

$$P(X_2, \dots, X_t, \dots, X_T | X_1) = \int_{\mathcal{P}} \prod_{t=1}^{T-1} X_t$$

where \mathcal{P} is the set of stochastic matrices on $\mathcal{S} \times \mathcal{S}$ and $\mu(\cdot|X_1)$ on \mathcal{P} is the mixing measure.

- Explicitly defined prior μ (SHGP): hierarchical construction of J's.
- SHGP is a mixture of recurrent, reversible Markov chains.
- SHGP is recurrent, Markov exchangeable and reversible.

SHGP as part of a Hidden Markov Model

Finite number of states K. Countably infinite model as $K \to \infty$.

 $G_0 = \sum_{i=1}^{K} w_i \delta_{x_i}$ $w_i \sim \text{Gamma}(\alpha_0 \mu_0(x_i), \alpha_0)$ $J_{ij} =$

 $Y_t | X_t, E \sim^{iid} F(\cdot | E_{X_t})$

 $\{E_k, k = 1, \dots, K\}$ state emission parameters. F: multinomial, Poisson and Gaussian.

ChIP-seq: measures what proteins are bound to DNA along the genome

- protein of interest l map to bin t
- Poisson (multivariate) likelihood model F

ChipSeq data for L = 6 proteins

Patch clamp recordings: recordings of changes in electrical potential caused by conformational changes in ion channels.

- measurements of a single alamethic in channel.
- $\sigma = E(X_t, 2)$ with $K \times 2$ emission matrix E.

	ChIP-seq		Ion channel recording	
	Train log likelihood	Test log likelihood	Train log likelihood	Test log likelihood
Reversible	-1.0488 ± 0.0009	-3.2422 ± 0.0023	2.204 ± 0.055	$\boldsymbol{2.034 \pm 0.058}$
Non-rev	-1.0494 ± 0.0009	-3.2478 ± 0.0022	2.108 ± 0.084	1.970 ± 0.078
iHMM	-1.0727 ± 0.0041	-3.3047 ± 0.0027	2.134 ± 0.070	2.008 ± 0.058

Sergio Bacallado, Stefano Favaro, and Lorenzo Trippa. Bayesian nonparametric analysis of reversible markov chains. The Annals of Statistics, 41(2):pp. 870–896, 2013. Perci Diaconis and David Freedman. De Finetti's theorem for Markov chains. The Annals of Probability, 8(1):pp. 115–130, 1980.

Persi Diaconis and Silke W. W. Rolles. Bayesian analysis for reversible markov chains. The Annals of Statistics, 34(3):pp. 1270–1292, 2006.

 $P(X_t, X_{t+1})\mu(\mathrm{d}P|X_1)$

$$G = \sum_{i=1}^{K} \sum_{j=1}^{K} J_{ij} \delta_{x_i, x_j}$$
$$J_{ji} \sim \text{Gamma}(\alpha w_i w_j, \alpha)$$

Experiments

• Y matrix $T \times L$, $T = 20^4$ and L = 6: counts, how many reads for the

Learnt emission matrix

• Y matrix $1 \times T$, $T = 10^4$: 10KHz recording of electrical potential

• Gaussian likelihood: $Y_t | X_t, E \sim N(Y_t; \mu, \sigma), \mu = E(X_t, 1),$

Clusters found by SHGP shown relative to a histogram of levels across the recording

References