A reversible infinite HMM using normalised random measures

Abstract

We use the Gamma process to construct a nonparametric prior over
reversible Markov chains. We use the resulting reversible Markov chain as
the hidden sequence in a Hidden Markov model and present experimental
results on two real datasets: epigenomics and ion channel recording.

Motivation

Reversible Markov chain:
P(Xy,....,X:,...X70)=P(Xp,..., Xs,... X4)

Applications
« Modelling physical systems e.g. transitions of a macromolecule

conformation at fixed temperature.
» Chemical dynamics of protein folding.
Tasks
« Find the transition matrix of the reversible Markov chain.
« Put a prior on the transition matriz.

Background

Gamma process I'P(agH) : Completely random measure on X with
Lévy measure

v(dw,dz) = p(dw)H (dz) = ayw™ e " dw H(dx).

on the space X x |0, 00). H; base measure, ay: concentration parameter.
O
GO L= Z wz-éXZ. ~ FP(O&QH)
i=1

Countably infinite collection of pairs { X;, w; }2°;.

Random walk on a graph G: Discrete-time random walk on G —
Markov chain with X; =k, k € {i,r,...}

& transition matrix

P(t,7) := L

>r Jik

Put prior on the transition matrix P (or on weights Js).

Related work

- Edge Reinforced Random Walk (ERRW) |[Diaconis and Freedman,

1980], |Diaconis and Rolles, 2006]: conjugate prior for the transition
matrix for reversible MCs.

= Edge reinforced schema by Bacallado et al. [2013] extends ERRW to
countably infinite space, reversible process, no closed form for the

prior.
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Define a prior over the weights Js using the I'P hierarchically.

ol'P over X:
Gy = > wid,, ~ I'P(ap, (o) @ .)/
i=1 @

o

E

States S == {x;;x;, € X, 1 € N},
countably infinite.
ol'P over § x &:

G = S: S: JijéXsz ™~ FP(Oéa :u)v

i=1 j=1

Jijlo, wyi, w; ~ Gamma(ow;w;, o)
Base measure atomicon & X §:
(i, ) = Go(z:)Go(z;)
Reversibility
[mpose J;; = Jj; ~ Gamma(aw;w,, a)
Result: detailed balance holds — Reversible markov chain
miP(i,7) = 7 P(7,1)

where m; = Z%)fl}zk’ 0 < >rdip < o0

Corollary: 7 is the invariant measure of the chain.

De Finetti Representation

Representation Theorem, Diaconis & Freedman, 1980]: A process s
Markov exchangeable and returns to every state visited infinitely of-
ten (recurrent), if and only if it is a mizture of recurrent Markov
chains

T—1
P(X27 ce 7Xt7 e 7XT‘X1) — /73 H P(Xta Xt—l—l)lu(dP|X1)
t=1

where P is the set of stochastic matrices on & x & and pu(-|X7) on P is
the mixing measure.

« Explicitly defined prior p (SHGP): hierarchical construction of J's.
« SHGP is a mixture of recurrent, reversible Markov chains.

« SHGP is recurrent, Markov exchangeable and reversible.

SHGP as part of a Hidden Markov Model

Finite number of states K. Countably infinite model as K — oo.

K K

i—1 j=1
Jij = Jii ~ Gamma(ow;w;, )
Y| Xy, E ~"" F(|Ex,)

{Ep, k=1, ---, K} state emission parameters. F: multinomial, Poisson

K
GO — Z wzé%
1=1

w; ~ Gamma(aguo(x;), o)

and Gaussian.
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Experiments

ChIP-seq: measures what proteins are bound to DNA along the
genome

- Y matrix T x L, T = 20* and L = 6: counts, how many reads for the
protein of interest | map to bin t

= Poisson (multivariate) likelihood model F
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Patch clamp recordings: recordings of changes in electrical potential

caused by conformational changes in ion channels.

- Y matrix 1 x T, T' = 10* 10KHz recording of electrical potential
measurements of a single alamethicin channel.

- Gaussian likelihood: Y;| Xy, E ~ N (Y, 0), p = E(X4, 1)
o = FE(X},2) with K x 2 emission matrix F.
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Clusters found by SHGP shown relative to a histogram of levels across the recording

ChIP-seq Ion channel recording
Train log likelihood Test log likelihood Train log likelihood Test log likelihood
Reversible —1.0488 £+ 0.0009 —3.2422 4+ 0.0023 2.204 +=0.055 2.034 4+ 0.058
Non-rev ~ —1.0494 £+ 0.0009  —3.2478 £ 0.0022 2.108 4+ 0.084 1.970 £ 0.078
iHMM —1.0727 £ 0.0041  —3.3047 £ 0.0027 2.134 4+ 0.070 2.008 £ 0.058
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